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ABSTRACT 
A computer model based on the fractional step method is presented for modelling density coupled mass 
transport in groundwater. Although several models utilising the fractional step method had been developed 
previously, all were based on the Eulerian solution approach. The model developed by the authors uses 
the Langrangian approach which has some inherent advantages and disadvantages. The problems associated 
with the implementation of the fractional step method and techniques by which they were overcome are 
discussed. The performance of the model is examined and results obtained for standard problems are 
compared with those from other computer packages. 

KEY WORDS Fractional step method Operator splitting Advection-diffusion equation Fluid flow/transport in 
porous media Groundwater pollution 

INTRODUCTION 

In general there are two alternative approaches for solving flow problems, the Eulerian and the 
Lagrangian approaches. In the Eulerian approach a fixed reference system is used, while in the 
Lagrangian approach the system of reference moves with the flow. Each approach has its 
advantages and disadvantages. 

For mass transport problems, the Eulerian approach is easier to implement but, as is well 
known, is prone to solution oscillations and numerical dispersion8,10. On the other hand, the 
Lagrangian approach has the advantage that it follows the movement of the fluid and thus the 
conservation equations take their simplest form, hypothetically at least, eliminating numerical 
dispersion. The Lagrangian approach has a fundamental difficulty associated with large 
deformations generated by fluid motions although this difficulty can be overcome by having the 
mesh re-generated after each timestep. 

The Lagrangian approach, with mesh regeneration after each timestep, is adopted here to 
develop a fractional step method (FSM)21 for solving the advection-diffusion equation. The idea 
of the fractional step method originated in the early seventies29 but did not become popular 
until a decade later. The term fractional step, which also is known as operator splitting, is used 
in the literature to cover various numerical procedures. Terminology associated with these 
procedures is inconsistent and neither the theoretical background nor advantages and limitations 
of the various splitting techniques are clearly established. 

Various operator splitting criteria can be used; space splitting, time splitting and process 
splitting. Space splitting is customary when multidimensional modelling based on finite differences 
is involved. Time splitting is adopted when a complete system of equations is solved using 
different discretisation techniques. The well known Alternating Direction Implicit (ADI) scheme 
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falls into the time splitting category. In process splitting (which is the method adopted in this 
paper) the governing equations are split up into fractional steps corresponding to the basic 
physical processes involved. 

In this study the development of the method based on the Lagrangian approach for 
two-dimensional flow and mass transport in groundwater3,7 is presented together with the results 
obtained. 

THE FRACTIONAL STEP METHOD 

Characteristics of the fractional step method 
The fractional step method can be applied in the numerical solution of initial value problems 

involving a number of transport directions and interacting influences21. Consider an initial value 
problem, with dependent variable ε, of the form, 

where L is some operator. While L is not necessarily linear, suppose that it can be written as a 
linear sum of m individual differential operators, which act additively on ε, 

The numerical solution of (1) over a time step Δt is achieved in m fractional steps, each of 
duration Δt/m because each partial operation acts with all the terms of the original operator. 
Each of the fractional steps involves the numerical solution of one of the consecutive initial 
value problems: 

The major advantage of the fractional step method is that separate consideration can be given 
to each step, providing the freedom of employing the most appropriate numerical algorithm for 
each separate equation (process) and not forcing the adoption of a single algorithm for the 
complete process. 

To demonstrate the fractional step method, consider the two-dimensional advection-diffusion 
equation, with no chemical reaction terms: 

where xi (with i = 1, 2, 3) are the components of the Cartesian coordinate system, t is time, C is 
concentration of the dissolved constituent, ui is local pore velocity in the ith direction and Dij 
is the coefficient of hydrodynamic dispersion2. 

In the context of the fractional step method, (4) becomes: 

where, 
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An explicit scheme can be used for the advection term, (6a), with an implicit scheme for the 
diffusion term, (6b). The inclusion of chemical reactions involves a relatively minor extension. 
Finally, it should be noted that by employing the fractional step method, special attention can 
be given to the advection terms which are the main cause of numerical dispersion. Numerical 
dispersion is pronounced in the cases where density coupling of the fluid flow and the 
advection-diffusion equations is required. 

The solution of the flow and advection-diffusion equations using the fractional step method 
The flow equation as well as the advection-diffusion equation, the appropriate boundary 

conditions, and also the method of their solution using stationary finite elements are well 
documented7,13. The method of solution based on the fractional step method utilising moving 
coordinates, can be summarised as follows: 

The flow equation (6a) is solved for the hydraulic heads at the nodes and then the corresponding 
velocities at the nodes are calculated. The first fractional step is the advection step in which, 
knowing the velocities at the nodes and the timestep Δt, the nodes are moved to new positions 
determined from a fourth-order Runge-Kutta method. Nodes passing the outflow boundary are 
taken out of the system and new nodes are introduced on the inflow boundary. The nodes are 
then located ready for the diffusion part of the fractional step algorithm. For the second part 
of the fractional step (6b) the concentrations of all the nodes are estimated by solution of the 
diffusion equation. 

PREVIOUS WORK WITH THE FRACTIONAL STEP METHOD 
Numerical experiments in only one dimension were carried out by Sobey21 in order to determine 
the performance of the FSM. The Fourier response and the integrated square error characteristics 
were computed22,23. Sobey's21 approach has been extended to two dimensional flow in this 
paper, and applied to the solution of the advection-diffusion equation3 utilising moving 
coordinates. In recent years, the fractional step method has been widely utilised in Eulerian 
based models, such as models for industrial codes25, three-dimensional finite element code for 
modelling seawater intrusion4, and a three-dimensional model simulating coupled groundwater 
flow and transport within saturated and unsaturated zones26. The fractional step method was 
also utilised in the solution of advection-dispersion-reaction problems27. The solution was 
achieved in two steps. The first half of the timestep involves the solution of the advection-dispersion 
step, while the second half involves the solution of the reaction step27. 

A problem commonly used for evaluating numerical schemes for the advection-diffusion 
equation is the rotating cone problem18. An initially conical distribution with peak concentration 
C = 1.0, is given a solid body rotation with an angular velocity of unity. The diffusion coefficient 
Dij is assumed to be constant and is denoted by D. At time t = 0.0 the cone with initial radius 
at the base r0 is placed on a plane of extent — 1 ≤ (x, y) ≤ 1 with the centre of the cone at position 
(x0, y0). The concentration C at any position on the plane is given by: 

where, 

The velocity field is given by, 

u = -ωy, v = + ωx (8) 
where, 

ω = angular velocity of the cone (anti-clockwise direction positive). 
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The parameters used in this paper are r0 = 0.25 m and (x0, y0) = (-0.5, 0.0) (see Figure 1). 
In the case where the diffusion coefficient is zero (D = 0.0 m) the cone which rotates about the 

origin should return undistorted to its original position after any integral number of periods 
Τ = 2π/ω (provided there are no numerical errors) since the elements of the cone describe concentric 
circles about the origin of the axes. 

It is widely recognized that numerically it is much more difficult to obtain accurate solutions 
for an advectively dominated flow problem than for a diffusion dominated problem. The ratio 
of advection to diffusion can be represented by the Peclet number, Pe = uL/D where u is the 
velocity, L is a characteristic length, and D is the diffusion coefficient. A difficult case for 
numerical solution would be an advectively dominated flow in which Pe » 1 with finite diffusion 
(D ≠ 0), for which the solution will be a slowly diffusing cone. The analytical solution for the 
amplitude of a purely diffusing cone is known5. With a slight adaptation of case VII in §10.3 of 
Carslaw and Jaeger5, the value of concentration C for a cone with initial radius r0 and amplitude 
unity, centred at the origin of an unbounded region can be expressed as3: 

where erf is the tabulated error function. Equation (9) can be used for checking the accuracy of 
the numerical solution as long as is very small and therefore the answer is not affected by 
the presence of the boundaries. 

An investigation was carried out3 on a 17 x 17 grid with D = 0.001 for a single time step of 
Δt = 0.25 s, and hence diffusion parameter (D' = D Δt/Δs2) of 0.1 The result for the peak 
concentration (r/r0 = 0.0) after this quarter revolution was 0.721 which compares favourably with 
the value of 0.719 obtained from the analytical solution. 

DETAILS OF THE IMPLEMENTATION OF THE FRACTIONAL STEP METHOD 
IN A COMPUTER PROGRAM 

Grid generation 
In the solution based on the fractional step method, the solution domain is covered by grid 

points, each with known concentration. Figure 2 shows a small area within the boundaries with 
nodes and a superimposed grid at the commencement of the timestep. After the diffusion step, 
the new concentrations are known and also their velocities. Thus the new position of the nodes 
can be determined (empty circles in Figure 2). For the first step of the fractional step method 
adopted, advection takes place while for the second, diffusion takes place. Thus due to the actual 
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Table 1 Comparison of non-dimensional concentration obtained from different element arrangements with a 17 by 17 
grid for a 2-D cone problem 

r/r0 

0.0 
0.5 
1.0 
1.5 
2.0 

Analytical 

0.7190 
0.4476 
0.0761 
0.0008 
0.0000 

Arrangement (a) 

6 element nodes 

0.7201 
0.4521 
0.0767 

-0.0076 
0.0004 

Computer results 

Arrangement (b) 

8 element nodes 

0.7821 
0.4331 
0.0498 

-0.0028 
0.0016 

4 element nodes 

0.6324 
0.4653 
0.0720 

-0.0130 
0.0004 

movement of nodes during the advection part, a loss of grid points on the outflow boundary of 
the computational region and a gain of points on the inflow boundary occurs. These complications 
require careful bookkeeping operations. In every timestep a new mesh is required to take into 
account the new position of the nodes after advection. 

Many grid generation algorithms are available in the literature6,15,24. These algorithms can 
be divided into two major groups, automatic and semi-automatic. In this project, since a new 
mesh is required in every iteration, an automatic and computationally efficient algorithm was used. 

A triangular mesh is the most convenient to fit to what becomes an arbitrary arrangement 
of points because the nodes move in a random way, and also the triangular mesh gives a better 
representation of the boundaries than one using elements with larger numbers of straight sides. 

Effects due to orientation of the elements 
The accuracy of the results obtained for the diffusing cone problem can be estimated by 

comparing them with the corresponding ones from the analytical solution3. For nodes uniformly 
spaced in two directions at right angles, as illustrated in Figure 3 in arrangements (a) and (b), 
it will now be shown that different triangular mesh arrangements give significantly different 
results. This has been also noted by other researchers30. 

A summary of the results is presented in Table 1. After a quarter of a revolution (Δt = 0.25 s) 
and with the diffusion coefficient D set to 0.001 m2 s - 1 , the peak concentrations calculated using 
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different mesh arrangements varied by more than ten percent from those obtained from the 
analytical equation. For this problem, comparison with the analytical solution shows that the 
mesh arrangement which connects each internal node to six elements (Figure 3a) gives better 
results than a mesh arrangement which has some nodes connected to four elements while others 
are connected to eight elements (Figure 3b). 

Table 1 presents concentrations at different positions defined by the ratio of the distance r of 
the point under consideration from the centre of the cone to the original radius of the cone r0. 
The results are presented for r/r0 ranging from zero (the centre of the cone), to two (twice the 
initial radius of the cone) for the two mesh arrangements presented in Figure 3. The simulation 
was performed by a 17 by 17 grid. Results from other grid densities are compared later. 

Table 2 presents non-dimensional concentration results obtained from different element 
arrangements for three different grid sizes (9 by 9, 17 by 17 and 33 by 33). For each of these 
grid sizes the concentrations at r/r0 equal to 0.0 and 0.5 are presented. The first row of Table 
2 presents results for the case where the centre of the cone is located on a node which is connected 
to six elements [arrangement (a1)] in which all elements lean towards the lower left corner. The 
second row presents results for a case similar to the first except that the elements follow 
arrangement (a2) in which all elements lean towards the lower right corner. The results presented 
on the third row are from the case where the mesh arrangement is such that the centre of the 
cone can be placed on a node which is connected either to four or to eight elements. 

Table 2 Comparison of non-dimensional concentration results for a 2-D cone for different node connections 

Element 
configuration 

arrangement (a1) 

arrangement (a2) 

rhombic 

r/r0 

0.0 
0.5 

0.0 
0.5 

0.0 
0.5 

9 by 9 

0.72005 
0.45211 

0.72005 
0.45211 

4 elements 
0.63243 
0.46526 

17 by 17 

0.72005 
0.45211 

0.72005 
0.45211 

4 elements 
0.63243 
0.46527 

17 by 17 

not 
applicable 

not 
applicable 

8 elements 
0.78209 
0.43310 

33 by 33 

0.7139 
0.4413 

0.7139 
0.4413 

8 elements 
0.6916 
0.4472 

Analytical values r/r0 = 0.0, C = 0.7190; r/r0 = 0.5, C = 0.4476 
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Since advection moves nodes in a non-regular pattern, it is necessary to fit a mesh to randomly 
placed nodes. Further solutions have been obtained with arbitrarily arranged meshes for 
comparison with the analytical solution as shown in Table 3, where the centre of the cone is 
placed on a node connected either to five, six, or eight elements. The results show that for this 
case of randomly connected nodes, errors of up to eight percent can occur in the numerical 
solution of the diffusion equation. 

The same test (for the diffusion part only) was applied to the finite difference method alternating 
direction implicit scheme (ADI). A cone with radius r0 = 0.25 and initial peak concentration C 
of 1.0, is placed on a plane region with x and y dimensions ranging from -1.0 to +1.0 and is 
left to diffuse for a timestep Δt of π/4. As can be observed from Table 4, except for the 65 by 
65 grid, the results for the more demanding case of r/r0 = 0.0 are not very encouraging when 
compared with those obtained from the analytical solution and from the finite element method 
for the same grid size. 

It should be recognized, however, that the initial conical distribution provides a reasonably 
severe test of the accuracy of numerical methods. From the above it was concluded that the 
triangulation algorithm (FPMESH16) which has the tendency to connect six elements to each 
node where all the elements are leaning in the same direction (arrangements a1 and a2) would 
be preferable since it produces more accurate results than a triangulation algorithm (TRMESH20) 
which connects the nodes at random in any direction. 

The algorithm on which FPMESH is based, initially specifies the boundary points in an 
anti-clockwise direction and then it generates starting from the boundaries, moving inwards in 
an anti-clockwise spiral direction. 

Table 3 Comparison of non-dimensional concentration results for a 2-D cone 
for elements with random node connections 

Element 
configuration 

random 

Analytical 
values 

r/r0 

0.0 
0.5 

5 elements 

0.68378 
0.46513 

6 elements 

0.72205 
0.45127 

8 elements 

0.77828 
0.43478 

r/r0 = 0.0, C = 0.7190; r/r0 = 0.5, C = 0.4476 

Table 4 Comparison of non-dimensional concentrations obtained using finite 
difference (ADI) and finite element methods for the 2-C cone case 

Concentration at 

Grid size 

17 by 17 
33 by 33 
65 by 65 

r/r0 = 0.5 

finite 
difference 

0.4583 
0.4499 
0.4502 

finite 
element 

0.4521 
0.4413 
not run 

r/r0=0.0 

finite 
difference 

0.8265 
0.7431 
0.7191 

finite 
element 

0.7200 
0.7139 
not run 

Analytical values 0.4476 0.7190 
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In the algorithm on which TRMESH is based, the nodes have initially to be sorted since this 
helps the algorithm to operate more efficiently. Two nodes are considered and a line is drawn 
between them. The position of a third node with respect to the line is estimated. The mesh is 
generated so that the maximum number of equilateral triangles are created. Mesh generation 
commences on one boundary and finishes on the opposite boundary. 

The second algorithm was adopted because firstly it has a tendency to generate elements 
leaning in one direction and secondly, it is about 2.5 times faster than FPMESH. Speed is a 
very important criterion in the selection of a triangulation algorithm because in every timestep 
a new triangulation is required and the triangulation component of the computer model consumes 
most of the central processing unit (CPU) time in each timestep. 

Boundary conditions 
Another problem associated with the implementation of the fractional step algorithm is the 

imposition of the boundary conditions. Process splitting within the solution domain requires a 
corresponding splitting of the boundary conditions. The major criticism of splitting techniques19 

has been related to the treatment of the boundary conditions. The known boundary conditions 
correspond to the complete differential equation and not to the split equations. There is no 
doubt that this is a relevant criticism, given that most applications of the advection-diffusion 
equations are sensitive to the boundary conditions. An investigation1 showed that for the 
parameters used in the present study, the boundary condition for the complete advection-diffusion 
equation provides a satisfactory estimate of the intermediate level boundary value which has to 
be specified at the end of the advection step and at the beginning of the diffusion step. 

In the above investigation1, different methods for implementing the boundary conditions are 
proposed, and the normalised mean square error for the different one-dimensional cases is 
presented in the form of contour plots. The normalised mean square error is dependent on the 
dimensionless flow parameter which is defined as u* = u Δt/Δx and the logarithm of the 
dimensionless dispersion parameter D* = D Δt/Δx2. 

For the present study the flow parameter u* and the logarithm of the dispersion parameter 
log10 D* are estimated to be less than 1.0 x 10 - 3 and —5.0 respectively. Based on the above 
estimated parameters, for the method where the initial boundary conditions for the complete 
one-dimensional advection-diffusion equation are implemented, the normalized mean square 
error was less than 0.005 (according to Reference 1). Although a two-dimensional problem is 
solved in the present study, an error of the same order as for the one-dimensional case would 
be expected. Errors of that magnitude indicate that, the given boundary condition for the 
complete advection-diffusion equation provides a satisfactory estimate of the intermediate level 
boundary value. Another indication is the good agreement between results obtained from the 
model and from known solutions for specific problems which will be presented in the following 
section. 

Accounting for moving nodes—the bookkeeping procedure 
Since the nodes move after every timestep, bookkeeping of the nodes proved to be a crucial 

part of the implementation of the fractional step method. After each time step the nodes which 
moved across the outflow boundary had to be taken from the system and new nodes introduced 
on the recharge boundary. Nodes that tended to cross the impermeable boundaries were relocated 
on the boundary (refer to Figure 4). Theoretically, nodes should not cross the impermeable 
boundaries and the tendency to do so results from too large a timestep being employed. For 
the new nodes introduced on the recharge and constant head boundaries, associated boundary 
conditions (known fluxes and known heads) had to be implemented. In the case of an unconfined 
aquifer the position of the free surface also had to be estimated at every time step. For recharge 
from the top, the new nodes had to be introduced along the free surface as well. 

Another complication which arose in the implementation of the fractional step method was 
a tendency towards local overcrowding of nodes. This should be avoided because it creates 
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triangles with large differences between the obtuse and acute angles which, as is well known in 
the application of the FEM30, causes numerical errors. For the case of two nodes too close 
together, both were deleted and a new node with average x and z coordinates was introduced. 
The concentration of the new node was estimated by ensuring the mass of contaminant in the 
region of all the elements affected by those nodes was conserved. 

Problems also arose when nodes were too far apart. This also should be avoided because the 
accuracy of the solutions in this region is reduced due to coarseness of the mesh. An additional 
node with average x and z coordinates was introduced with a concentration so that the mass 
in the region was conserved. 

Choice of timestep 
The computer program based on the fractional step method was used to simulate several 

different cases. These are shown in Figure 4 and include (i) an unconfined aquifer with recharge 
over its whole length, part of which is recharged by contaminated water which may have a 
density different from that of freshwater; (ii) an unconfined aquifer with localised contaminated 
surface recharge which may have a density different from that of freshwater; (iii) seawater intrusion 
in a coastal unconfined aquifer which is replenished from the surface and; (iv) seawater intrusion 
in a confined aquifer. 

It should be noted that the pollutant, which is simulated with saltwater, could have densities 
different from that of the groundwater. It should also be noted that the seepage surface at the 
downstream boundary is not taken into account by the computer model because this would 
significantly increase the complexity of the computer code without any appreciable improvement 
in accuracy of the model. 

The main program which calls all the other subroutines is called DRIVER, a flowchart of 
which is given in Demetriou7 and is reproduced in Figure 5 for convenience. 

Because the velocities of the nodes vary and this variation becomes more pronounced when 
there is an appreciable density difference, the choice of the timestep is critical to the successful 
execution of the computer program. For the computer runs performed for an unconfined aquifer 
with recharge over its whole length as shown in Figure 4(i), it was observed that the largest 
nodal velocities are of the order of one hundred times the smallest ones. 

By choosing a large timestep the nodes move longer distances, less nodes are involved in the 
calculations, and larger elements are generated, all of which reduces the accuracy of the computer 
model. By choosing a small timestep some of the nodes hardly move, too many nodes are 
accumulated in the working area and this increases the CPU (central processing unit) time. Of 
course the optimum condition is to choose a large enough timestep so that the CPU time is 
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kept to acceptable limits while maintaining the required accuracy in the calculations. 
Criteria established for determining the duration of each timestep for case (i) in Figure 4 

include: (a) determine the node with the highest velocity; (b) estimate the time required to move 
the node a distance equivalent to the depth of the aquifer; (c) determine the smallest non-zero 
velocity from the nodes which lie underneath the contaminant (saltwater) recharge area; (d) 
estimate the time required to move the node with the smallest non-zero velocity a distance 
equivalent to dz/10, where dz is the original vertical distance between the nodes at the outflow 
bounday CD in Figure 4(i). The timestep is then determined as the maximum of (b) and (d). 
Normally criterion (d) dominates and the difference between the values of (b) and (d) is usually 
not more than 500 s. 
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It was observed that for a timestep larger than 2000 s, the error in mass conservation was 
high, and thus the timestep was not allowed to exceed this value. 

The limits chosen, such as dz/10, depth of the aquifer and 2000 s, were determined by trial and 
error and are therefore valid only for the case of an unconfined aquifer with recharge over its 
entire length. For other cases such as seawater intrusion in both an unconfined aquifer and a 
confined aquifer (as shown in Figures 4(iii) and (iv)), a constant timestep also determined by trial 
and error was employed. More work would be required to establish a rigorous methodology 
for determining the timestep for general groundwater contamination problems. 

Mass conservation 
Mass conservation is one of the most important conditions to be satisfied by the results from 

any computer model of mass transport. A number of previous computer models have been 
developed with mass or momentum conservation specifically in mind, by implementing complex 
differencing schemes, which usually are very expensive in CPU time. In the computer runs 
performed in this study, it was found that the accuracy with which mass is conserved depends 
on the case to be simulated (generally high density differences result in difficulties), and the 
length of the timestep employed. 

As mentioned above, the optimum timestep is one which is long enough to maintain the 
computing time within acceptable limits while restricting the error in mass conservation. In 
order to obtain a high degree of accuracy, the timestep has to be reduced causing the computing 
time to increase dramatically since not only are more timesteps required to cover the specified 
simulation period but also more nodes are introduced into the system making the computer 
simulation more expensive for each of those timesteps. 

NUMERICAL RESULTS 
Numerical results obtained for well known standard problems are compared with those from 
other computer packages and from theoretical solutions. Results from the model are also 
compared with those from an instrumented sandbox simulating contamination of an unconfined 
aquifer recharged from the surface. 

Uniform flow in a confined aquifer 
A simple test of the performance of the fractional step method (and other computer models) 

is the problem involving constant velocity horizontal flow through a confined aquifer with 
constant concentration (C= 1) on the inflow boundary. This case is depicted in Figure 6 where 
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the initial and boundary conditions are also given. In Figure 6, u and w are velocity components 
in the x and z directions respectively. Results are obtained using the fractional step method and 
compared with results from an alternative computer package called SUTRA28 and from the 
theoretical equations given by Ogata and Banks17. The position and width of the front between 
fresh (C = 0) and contaminated (C= 1) water was determined by the three methods. The diffusion 
coefficient is specified as D = 1.0x 10 - 9 m2 s-1 and the timestep as Δt = 500s. Figure 7 shows 
the results obtained in a section of the solution area for the three methods after a certain time. 

As can be observed from Figure 7, the width of the front W2 predicted by the FSM agrees 
reasonably well with the analytical solution W1 whereas the width from SUTRA (W3) is relatively 
large, due presumably to numerical dispersion for the particular mesh used. It should be 
emphasised that no attempt has been made to optimize the number of grid points for either of 
the numerical solutions and it is clear that the mesh required to give a reasonable solution from 
SUTRA would be much finer than the one employed. Nevertheless, the number of nodes used 
in the FSM mesh (7 by 21) was the same as for SUTRA. These results indicate the ability of 
the FSM to give acceptable results with relatively few nodal points compared with methods 
which simultaneously solve the advective and dispersive parts of the equation. 

Seawater intrusion in a confined aquifer (Henry's solution) 
A solution often used to test the accuracy of a groundwater mass transport computer model 

is that of Henry12 for the seawater intrusion problem. 
As described in the documentation for SUTRA28, the problem involves seawater intrusion 

into a confined aquifer in two dimensions under steady conditions. Freshwater recharge 
originating from inland, passes over saltwater and discharges at a vertical sea boundary. This 
case is shown in Figure 4(iv). 

The intrusion problem is non-linear and may be solved by approaching the steady-state 
gradually through a series of timesteps. Initially there is no saltwater in the aquifer and, at time 
zero, saltwater begins to intrude from the seaward boundary under the freshwater. The intrusion 
is promoted by the greater density of the saltwater. 

The dimensions of the problem were selected to facilitate comparison with the steady-state 
dimensionless solution12 and with results from a number of other published simulation models, 
such as SUTRA28 and INTERA14. 

A total simulation time of t = 6000 s, was selected by Voss28 and was considered to be sufficient 
to reach essentially steady-state conditions at the scale simulated. 

Simulation steup 
For the SUTRA computer model, the mesh consists of twenty by ten square elements each 

of size 0.1 m by 0.1 m. The mesh has 231 nodes and 200 square elements. The length of the 
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timestep is 60 s, and 100 timesteps are required. At every timestep both pressure and concentration 
are calculated. 

The freshwater inflow is represented by employing source nodes at the left-hand vertical 
boundary (in Figure 4(iv)) with inflow rate of 6.6 x 10 -2 kgs - 1 (divided among 11 nodes) and 
relative concentration of 1.0. The porosity of the medium is equal to 0.35 and the hydraulic 
conductivity K = 1.0 x 10 -2 m s - 1 . 

The following boundary conditions are implemented. There is no flow across the top and 
bottom boundaries. The freshwater source is set along the vertical boundary at x = 0. The vertical 
boundary at x = L in Figure 4(iv) is held at the hydrostatic pressure due to sea water through 
the use of specified pressure nodes. Any water entering through these nodes has the concentration 
of seawater. 

The initial conditions are constant pressures based on the freshwater inflow set everywhere 
in the aquifer, zero concentration everywhere, and specified pressures at the sea boundary. 

Henry's solution assumes that the dispersion is represented by a constant coefficient of diffusion, 
rather than by velocity dependent dispersion coefficient. In order to match Henry's parameter 
a dispersion coefficient of D = 6.6 x 10 -6 m2 s-1 was used. 

For the INTERA14 finite difference code (with centered-in-space and centered-in-time 
approximations) and using a dispersion coefficient of D = 6.6 x 10 - 6 m2 s - 1 , results were 
obtained at t = 6000 s. The results from INTERA14 were obtained from Voss28. 

For the computer model based on the FSM, the same boundary conditions as for SUTRA 
were implemented, and the elements used were triangular instead of squares. The initial number 
of nodes was the same (231) but in the FSM since the nodes move, new nodes are added and 
others are taken out from the working space and therefore the number of nodes varies (and 
usually increases) during the simulation time. Two simulation runs were performed. The total 
simulation time was 6000 s as for SUTRA and INTERA but the timestep chose was 100 s for 
the first run and 300 s for the second. 

Results 
Both computer models were run on a VAX station 3100 Model 38 and for Henry's problem 

the corresponding CPU times for compiling and executing are as follows: 
• SUTRA 299 s 
• FSM with timestep of 100 s (max. mumber of nodes = 700) 980 s 
• FSM with timestep of 300 s (max. number of nodes = 308) 157 s 

It should be noted that SUTRA produces various output files, the preparation of which consumes 
a significant part of the the CPU time. 

Figure 8 presents the results for SUTRA, INTERA, FSM and Henry's solution for the 0.5 
isochlor (line of constant level of salt concentration). As can be observed, both results from the 
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FSM match relatively well with Henry's solution but, while SUTRA agrees very well with 
INTERA, neither compares favourably with Henry's solution nor with FSM. It should be noted 
that Henry's solution, although analytic is still approximate and many researchers have their 
reservations about using this solution for comparison purposes. Better correspondence of the 
FSM result with Henry's 0.5 isochlor therefore, does not necessarily represent superiority of a 
model. 

The results of the two runs performed by the computer model based on the FSM agree very 
well though the timesteps were different. This demonstrates the importance of optimizing the 
timestep in a model based on the FSM so that the number of nodes involved in the simulation 
is kept small (and hence the execution time remains acceptably short), while at the same time 
the accuracy is preserved. 

Unconfined aquifer with uniform recharge over its whole length 
For this case the unconfined aquifer is uniformly recharged over its whole length, but part of 

the recharge is contaminated by saltwater which simulates the pollutant. This case is depicted 
in Figure 4(i) in which boundaries AB and AD are impermeable while on the outflow boundary 
CD the pressure is hydrostatic. Experimental runs were performed on an instrumented 
6.0 m x 0.6 m x 0.14 m sandbox7 to simulate the above case. 

The values of the different parameters used in the computer runs such as hydraulic 
conductivity and porosity of the porous medium, were measured in situ in the sandbox. The 
hydraulic conductivity K is 9.60 x 10 - 3 m s -1 , the fillable porosity θf is 0.34, and Darcy porosity 
θD is taken as 0.40. The values for the dispersivities were obtained from Guvanasen and Volker11 

who used the same experimental setup. The longitudinal dispersivity aL is 5.5 x 10 -3 m and the 
transverse dispersivy aT is 6.76 x 10 -5 m. The density of freshwater is taken as that of water at 
23°C, which is 998.0 kgm - 3 and the gravitational acceleration as 9.81 m s - 2 . The molecular 
diffusion coefficient Dm for homogeneous sand9 can be taken as 1.0 x 10 -9 m2 s - 1 . A detailed 
definition of the above mentioned parameters can be found in Bear2. 

The length of the aquifer was 6.0 m with a constant head H0 of 0.53 m at the outflow end. 
For a length of 0.5 m adjacent to the vertical impermeable boundary, the water density at the 
free surface nodes was equal to that of saltwater while the concentration was equal to 1.0 and 
the vertical recharge rate R, expressed in a non-dimensional form as R/K, was 2.36 x 10-3 

(recharge of 8.15 mm h - 1). The remainder of the free surface nodes had R/K equal to 2.36 x 10~3 

but with relative concentration of 0.0 (freshwater). 

Mass conservation 
Mass conservation checks7 for these runs showed that, in general, there is a better mass 

conservation for the neutrally buoyant cases than for the simulation runs with density difference 
Δpr>0.000. Δpr is the density difference ratio and is expressed as (ps—po)/po in which ps is the 
density at the maximum value of concentration Cs, and po is the freshwater reference density. 
The reasons for the increased difficulty in handling cases with density differences will now be 
given. It was observed that for the cases with density difference above 0.000 the timestep ranges 
from about 750 s to 1500 s while for the neutrally buoyant case it ranges from 1100 s to 1900 s. 
This was expected because, for cases with density difference Δpr>0.000, more nodes are required 
to achieve the desired accuracy. 

From the computer runs it was noted that, during early timesteps, the error in mass conservation 
is higher than that at later stages. This feature can be attributed to the fact that the saltwater 
plume is defined by a very small number of nodes in an area where there is a very high 
concentration gradient (underneath the saltwater recharge basin). It should be noted that all 
computer models generally suffer from high errors in the early stages of simulation, because the 
initial condition assumed in simulation is an infintely large concentration gradient at the source. 

During the trial runs performed to establish a procedure for determining the optimum 
magnitude of the timestep, it was observed that by decreasing the timestep below a certain value, 
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the error in mass conservation increased rather than decreased. By studying the positions, 
velocities and concentrations of the nodes in the working region of the model, the cause of this 
was shown to be the fact that high concentration nodes from underneath the saltwater recharge 
source, because of their higher velocities, moved to within groups of nodes with small 
concentrations (i.e. freshwater nodes) and this caused numerical instabilities. 

Comparison with experimental results 
The model was run for different density difference situations and the results obtained at set 

dimensionless times t' (t' = tR/θDHo) were used to produce contour plots. Figure 9 presents 
contour plots for density differences of 0.000, 0.010 and 0.022, at a dimensionless time of 2.0. 
Solid line contours are computational results and broken lines are experimental results. In both 
cases the 0.1, 0.5 and 0.9 dimensionless contours are shown. The concentrations are made 
dimensionless by dividing them by the initial concentration Cs, and the length parameters by 
dividing them by the constant head Ho at the outflow boundary. 

As can be observed from Figures 9(a), (b) and (c), the general shapes of the contaminant plume 
from experimental and computational results agreed reasonably well and the differences can be 
attributed to the following reasons: 
• the contours obtained from the experimental results were based on only fifty-six readings and 

the accuracy of the interpolated contours is limited; 
• in spite of the great care taken in placing the sand some heterogeneities in the porous matrix 

will remain and in certain situations may cause the saltwater plume to disperse further than 
it would in homogeneous conditions. 
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CONCLUSIONS 
A comparison of the results obtained for some standard hydraulic problems shows that the 
FSM based computer model presented here performs better than some well known computer 
models when simulating variable density fluid flow in aquifers. 

The FSM gave acceptable results with relatively few nodal points compared with methods 
which simultaneously solve the advective and dispersive parts of the equation. It has also been 
established that the computer model based on the FSM was relatively free from numerical 
diffusion and the oscillatory solution behaviour to which fixed grid numerical methods are prone 
under certain conditions. 

The model was also used to simulate laboratory experiments of variable density flow in 
unconfined aquifers. Generally there was good agreement between experimental and numerical 
results. 
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